Willson, A.,Minton, A. Gianna.,Collins, T. ,Al Harthi, S.,Sarrouf Willson, M.,Cerchio, S,Braulik, G.,Baldwin, R.
Oman Research Update; documenting cetacean diversity and blue whale feeding habitat in Dhofar, southern Oman Technical Report
no. 505, 2019.
Abstract | Links | BibTeX | Tags: acoustic, Arabian Sea, balaenoptera musculus, Blue whale, Distribution, Humpback Whale, megaptera novaeangliae, Oman, photo identification
@techreport{,
title = {Oman Research Update; documenting cetacean diversity and blue whale feeding habitat in Dhofar, southern Oman},
author = {Willson, A.,Minton, A. Gianna.,Collins, T. ,Al Harthi, S.,Sarrouf Willson, M.,Cerchio, S,Braulik, G.,Baldwin, R.},
url = {https://arabianseawhalenetworkdotorg.files.wordpress.com/2019/06/sc_68a_cmp_08_oman-research-update.pdf},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Paper presented to the 2019 meeting of the Scientific Committee of the International Whaling Commission},
number = {505},
pages = {14},
publisher = {IWC},
abstract = {Cetacean research has been conducted in Dhofar, southern Oman, since 2000 During this time efforts have been
primarily focused on documenting the distribution, abundance, and ecology of an Endangered population of
Arabian Sea humpback whales (ASHWs). The research has revealed the Hallaniyats Bay (including our study
site measuring approximately 10,000km2
) to be a habitat of importance for reproductive and foraging related
behaviours. Simultaneously the field surveys have revealed high cetacean diversity in the area, with over 18
species documented at the site, out of a total of 22 species known for the Arabian peninsula between 2003 and
2016. Short opportunistic surveys conducted March 2018 to April 2019 continue to provide evidence of the
ecological importance of the area for a diverse array of species, including several species of large baleen whales
(including humpback whales, Bryde’s whales, and blue whales) as well as a range of large, medium and small
odontocetes. Most recently, in April 2019, blue whales were observed over a three-day period, engaged in
behaviour associated with feeding. As well as documenting this important ecological event the team was able to
collect photographic, tissue and faecal samples that are expected to help resolve issues related to taxonomy and
population structure of blue whales in the northern Indian Ocean. The high levels of cetacean diversity and the
regular occurrence of species of scientific and conservation interest documented within a recent Important
Marine Mammal Area workshop suggest that the area warrants conservation management attention to maintain
its current ‘near-wilderness’ state. },
keywords = {acoustic, Arabian Sea, balaenoptera musculus, Blue whale, Distribution, Humpback Whale, megaptera novaeangliae, Oman, photo identification},
pubstate = {published},
tppubtype = {techreport}
}
primarily focused on documenting the distribution, abundance, and ecology of an Endangered population of
Arabian Sea humpback whales (ASHWs). The research has revealed the Hallaniyats Bay (including our study
site measuring approximately 10,000km2
) to be a habitat of importance for reproductive and foraging related
behaviours. Simultaneously the field surveys have revealed high cetacean diversity in the area, with over 18
species documented at the site, out of a total of 22 species known for the Arabian peninsula between 2003 and
2016. Short opportunistic surveys conducted March 2018 to April 2019 continue to provide evidence of the
ecological importance of the area for a diverse array of species, including several species of large baleen whales
(including humpback whales, Bryde’s whales, and blue whales) as well as a range of large, medium and small
odontocetes. Most recently, in April 2019, blue whales were observed over a three-day period, engaged in
behaviour associated with feeding. As well as documenting this important ecological event the team was able to
collect photographic, tissue and faecal samples that are expected to help resolve issues related to taxonomy and
population structure of blue whales in the northern Indian Ocean. The high levels of cetacean diversity and the
regular occurrence of species of scientific and conservation interest documented within a recent Important
Marine Mammal Area workshop suggest that the area warrants conservation management attention to maintain
its current ‘near-wilderness’ state.
Ashjian,C.J.,Smtih,S.L.,Flagg,C.N.,Idrisi,N.
Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994-1995 Journal Article
In: Deep-Sea Research Part II, vol. 49, no. 299, pp. 2377-2402, 2002.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, diel, Distribution, history, life history, migration, myctophids, Oceanic, Oman, predation, seasonal change, stocks, Upwelling, zooplankton
@article{,
title = {Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994-1995},
author = {Ashjian,C.J.,Smtih,S.L.,Flagg,C.N.,Idrisi,N.},
year = {2002},
date = {2002-01-01},
journal = {Deep-Sea Research Part II},
volume = {49},
number = {299},
pages = {2377-2402},
abstract = {The distinguishing characteristic that sets the Arabian Sea apart from other oceanic regions is the regular oscillation of monsoonal atmospheric conditions that produces predictable periods of upwelling or convective mixing, with associated biological response, during the Southwest and Northeast monsoons, respectively. This oscillation is also evident in cycles of standing stocks of zooplankton and micronekton. The vertical distribution and spatial pattern of zooplankton and micronekton biomass were estimated using an acoustic Doppler current profiler along a 1000-km transect extending from the continental shelf of Oman to the central Arabian Sea during ten cruises on the R/V Thomas G. Thompson (November 1994-December 1995). The influence of the Southwest Monsoon, and accompanying upwelling and enhanced acoustically derived biomass, was the dominant feature in the spatial-temporal distributions of both zooplankton and micronekton near the Omani coast. The diel vertical migration of predators (myctophids, pelagic crabs), and the seasonal changes in the strength of this signal, was the most significant pattern observed in the vertical distribution of biomass and imparted a strong day-night signal to the integrated upper water-column biomass. Significant differences in the magnitude of integrated upper water-column biomass, both zooplankton (day) and migrator-zooplankton (night), were seen between inshore and offshore of the atmospheric Findlater Jet. A station located in the central Arabian Sea demonstrated seasonal changes in biomass over the year, despite being quite far from the influence of the monsoonal oscillations. Predation pressure was greater offshore of the Findlater Jet than in the region inshore of the Jet or in the central Arabian Sea. The pelagic community of the Arabian Sea may have evolved life history strategies to coincide with the predictable monsoonal cycle},
keywords = {acoustic, Arabian Sea, diel, Distribution, history, life history, migration, myctophids, Oceanic, Oman, predation, seasonal change, stocks, Upwelling, zooplankton},
pubstate = {published},
tppubtype = {article}
}
Hitchcock,G.L.,Lane,P.,Smith,S.,Luo,J.G.,Ortner,P.B.
Zooplankton spatial distributions in coastal waters of the northern Arabian Sea, August 1995 Journal Article
In: Deep-Sea Research Part II, vol. 49, no. 387, pp. 2403-2423, 2002.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, displacement, Distribution, migration, Oman, surface temperature, temperature, trend, Upwelling, zooplankton
@article{,
title = {Zooplankton spatial distributions in coastal waters of the northern Arabian Sea, August 1995},
author = {Hitchcock,G.L.,Lane,P.,Smith,S.,Luo,J.G.,Ortner,P.B.},
year = {2002},
date = {2002-01-01},
journal = {Deep-Sea Research Part II},
volume = {49},
number = {387},
pages = {2403-2423},
abstract = {The spatial distribution of zooplankton biomass was surveyed in coastal waters of the northern Arabian Sea during the 1995 Southwest Monsoon (August) on cruise MB 95-06 of the NOAA Ship Malcolm Baldrige. Vertical patterns of displacement volumes from a limited set of paired day-night MOCNESS tows suggest there was little diel vertical migration in the coastal waters off the southern Arabian Peninsula. Zooplankton biomass varied from 5.2 to 15.1 9 dw m(-2) (178-517mM Cm-2) in the upper 200-300m of Omani coastal waters. Distributions of acoustic backscatter were mapped in eight daytime acoustic Doppler current profiler transects in coastal waters off Oman and Somalia. Several transects contained maxima in acoustic backscatter that coincided with cool, fresh surface features that were several tens of kilometers wide. Although there was considerable scatter in the relationship between acoustically determined biomass (ADB) of zooplankton and surface temperature, there was a trend of increased biomass in the cool surface temperatures of the Omani upwelling zone. Acoustic transects crossed two filaments that extended seaward from upwelling centers off Oman and Somalia. Estimated zooplankton ADB exported from the upwelling zones in the surface features was on the order of 300 kg dw s( -1 ). The physical and biological characteristics of filaments maintain zooplankton associated with upwelling areas, such as Calanoides carinatus, as they are advected offshore from coastal upwelling zones. (C) 2002 Published by Elsevier Science Ltd.},
keywords = {acoustic, Arabian Sea, displacement, Distribution, migration, Oman, surface temperature, temperature, trend, Upwelling, zooplankton},
pubstate = {published},
tppubtype = {article}
}
Kim,H-S,Flagg,C.N.,Howden,S.D.
Northern Arabian Sea variability from TOPEX/Poseidon altimetry data: an extension of the US JGOFS/ONR shipboard ADCP study Journal Article
In: Deep-Sea Research Part II, vol. 48, no. 134, pp. 1069-1096, 2001.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, Distribution, location, nearshore, oxygen minimum, south, spatial scale
@article{,
title = {Northern Arabian Sea variability from TOPEX/Poseidon altimetry data: an extension of the US JGOFS/ONR shipboard ADCP study},
author = {Kim,H-S,Flagg,C.N.,Howden,S.D.},
year = {2001},
date = {2001-01-01},
journal = {Deep-Sea Research Part II},
volume = {48},
number = {134},
pages = {1069-1096},
abstract = {Sea-level anomalies (SLA) derived from the TOPEX/Poseidon (T/P) altimetry and inferred geostrophic currents within the northern Arabian Sea were examined for the period from March 1993 through November 1996. The primary objective of this study was to confirm and extend our understanding of the upper-ocean mesoscale variability observed in the shipboard acoustic Doppler current profiler (ADCP) data collected during the US JGOFS/ONR Arabian Sea Expedition (September 1994-January 1996). The accuracy of the T/P altimetry data (~3 cm rms) results in an uncertainty in the altimeter-derived velocities comparable to the ADCP measurement error. Thus the T/P data provide a reasonable method for extending studies of the mesoscale dynamics for the region. Comparison of the T/P-derived geostrophic velocities with concurrent ADCP data showed good correlation, with an r2 between 0.7 and 0.9 and rms di!erences of 10 cm s-1. The T/P data con"rm both the overall spatial and seasonal current patterns observed by the ADCP. The monsoonally averaged rms sea-level anomalies indicate a high degree of intraseasonal variation due to the generation of squirts, jets and eddies all along the coast, the variability of which increases in both intensity and areal extent during the Southwest Monsoon. The SLA data indicate amuch reduced degree of variability over the shelf. The SLA-derived eddy kinetic energy (EKE) fields are consistent with those derived earlier from the ADCP data in both distribution and magnitude. There is a large increase in EKE to the west and southwest and to a lesser extent to the south and a large area of relatively reduced eddy activity over much of the eastern and northern Arabian Sea. The area of reduced eddy activity coincides with the location of the most intense portions of the oxygen minimum zone found in the northern Arabian Sea. The spatial scales of the eddies responsible for the EKE distribution over the study area range between 200 and 500km in the nearshore region, decreasing to 100-200km o!shore. While there is significant energy variability in annual and semi-annual time scales, a substantial portion of the energy is found between 50 and 120 days, and the relative importance of this frequency band increases offshore. Spectra indicate a distinct break in the frequency content of the eddy field at about 15§N, with little energy at less than annual periods south of this latitude.},
keywords = {acoustic, Arabian Sea, Distribution, location, nearshore, oxygen minimum, south, spatial scale},
pubstate = {published},
tppubtype = {article}
}
Luo,J.,Ortner,P.B.,Forcucci,D.,Cummings,S.R.
Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea Journal Article
In: Deep-Sea Research Part II, vol. 47 , no. 145, pp. 1451-1473, 2000.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, depth, diel, displacement, fish, migration, oxygen minimum, sonar, temperature, zooplankton
@article{,
title = {Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea},
author = {Luo,J.,Ortner,P.B.,Forcucci,D.,Cummings,S.R.},
year = {2000},
date = {2000-01-01},
journal = {Deep-Sea Research Part II},
volume = {47 },
number = {145},
pages = {1451-1473},
abstract = {Acoustic (153 kHz ADCP and 12 kHz hull-mounted transducers) data and MOCNESS (MOC01 and MOC10) net tow samples collected in the Arabian Sea during the Spring Intermonsoon (April/May) and Southwest Monsoon (August) in 1995 documented substantial diel migrations of fish and zooplankton despite the year-round presence of an oxygen minimum ((0.2 ml l-1 at 125-150 m). Fish and zooplankton layers were distinguished by comparing 12 kHz sonar and 153 kHz ADCP backscatter data, which indicated that the strongly migrating layers were predominantly composed of fishes. Fish vertical migration speeds were independently estimated from the slopes of the volume scattering layers and from the vertical velocity components of the ADCP, yielding average speeds of 4 and 3 cm s-1 and maximum speeds of 13 and 10 cm s-1, respectively. A few migrating zooplankton layers were identified with an average speed of about 2 cm s-1 and maximum speeds as high as 8 cm s-1. Migration depths for both zooplankton and fish differed somewhat amongst stations and appeared to be related to local hydrographic conditions (principally the vertical gradients in DO and water temperature). Zooplankton displacement volumes at individual sites suggested that zooplankton biomass during the Southwest Monsoon could be as much as fivefold greater than during the Spring Intermonsoon. This observation was confirmed for the region in general by first deriving a relationship between ADCP backscatter intensity and daytime zooplankton biomass and then comparing the latter between cruises using daytime ADCP data taken along a 1500 km transect that extended from the coast of Somalia to the center of the northern basin.},
keywords = {acoustic, Arabian Sea, depth, diel, displacement, fish, migration, oxygen minimum, sonar, temperature, zooplankton},
pubstate = {published},
tppubtype = {article}
}
Böhm,E.,Morrison,J.M.,Manghnani,V.,Kim,H-S,Flagg,C.N.
The Ras al Hadd Jet: remotely sensed and acoustic Doppler profiler observations in 1994-1995 Journal Article
In: Deep-Sea Research Part II, vol. 46, no. 46, pp. 1531-1549, 1999.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, budget, Gulf of Oman, Oman, south
@article{,
title = {The Ras al Hadd Jet: remotely sensed and acoustic Doppler profiler observations in 1994-1995},
author = {Böhm,E.,Morrison,J.M.,Manghnani,V.,Kim,H-S,Flagg,C.N.},
year = {1999},
date = {1999-01-01},
journal = {Deep-Sea Research Part II},
volume = {46},
number = {46},
pages = {1531-1549},
abstract = {The existence of a surface barotropic front-jet system at the confluence region o! the eastern tip of Oman (Ras Al Hadd or RAH) is documented for 1994-1995 through advanced very high resolution radiometer (AVHRR) and acoustic Doppler current profiler (ADCP) observations. The thermal signature of this confluence is visible in 1995 between early May and the end of October, i.e., throughout the SW Monsoon and into the transition period between SW and NE Monsoons. The thermal characteristics are those of a NE-oriented front between cooler water of southern (upwelled) origin and warmer waters of northern Gulf of Oman origin. During the period when the thermal front is absent, ADCP data suggest that the confluence takes a more southward direction with Gulf of Oman waters passing RAH into the southeastern Oman coastal region. The thermal gradient is initially small (June-July) but later increases (August-October) into a front that exhibits small-scale instabilities. Surface current velocities within the jet, estimated by tracking these features in consecutive satellite images, are 0.5-0.7 m s-1 and in remarkable agreement with concurrent ADCP retrievals in which the seasonal maximum in velocity is 1 m s-1. ADCP observations collected during several US JGOFS cruises reveal a weakly baroclinic current in the confluence region that drives the waters into the offshore system. The fully developed jet describes a large meander that demarcates two counter-rotating eddies (cyclonic to the north and anticyclonic to the south of the jet) of approximately 150-200 km diameter. The southern eddy of this pair is resolved by the seasonally averaged, sea-level anomaly derived from TOPEX/Poseidon observations. During the SW Monsoon, the RAH Jet advects primarily cold waters along its path, but as soon as the wind system reverses with the transition to the intermonsoonal period, a warm current is rapidly established that advects the surface coastal waters of the Gulf of Oman offshore. In accordance with the interannual variation of the wind forcing phase, the reversal of the currents from NE to SW occurred earlier in 1994 than in 1995, confirming that the RAH Jet is integral part of the East Arabian Current. The transport of the Jet, estimated by combining SST information on the width with ADCP data on the velocity's vertical structure, is found to fluctuate between 2-8'106 m3 s-1 and its thickness between 150-400 m. These significant fluctuations are due to the time-variable partition of horizontal transport between eddies and the RAH Jet and are potentially important to the nutrient and phytoplankton budgets of the Arabian Sea.},
keywords = {acoustic, Arabian Sea, budget, Gulf of Oman, Oman, south},
pubstate = {published},
tppubtype = {article}
}
Morrison,J.M.,Codispoti,L.A.,Smith,S.L.,Wishner,K.,Flagg,C.,Gardner,W.D.,Gaurin,S.,Naqvi,S.W.A.,Manghnani,V.,Prosperie,L.,Gundersen,J.S.
The oxygen minimum zone in the Arabian Sea during 1995 Journal Article
In: Deep-Sea Research Part II, vol. 46, no. 174, pp. 1903-1931, 1999.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, density, depth, diel, Distribution, location, migrate, migration, occurrence, oxygen minimum, plankton, thermocline, zooplankton
@article{,
title = {The oxygen minimum zone in the Arabian Sea during 1995},
author = {Morrison,J.M.,Codispoti,L.A.,Smith,S.L.,Wishner,K.,Flagg,C.,Gardner,W.D.,Gaurin,S.,Naqvi,S.W.A.,Manghnani,V.,Prosperie,L.,Gundersen,J.S.},
year = {1999},
date = {1999-01-01},
journal = {Deep-Sea Research Part II},
volume = {46},
number = {174},
pages = {1903-1931},
abstract = {This paper focuses on the characteristics of the oxygen minimum zone (OMZ) as observed in the Arabian Sea over the complete monsoon cycle of 1995. Dissolved oxygen, nitrite, nitrate and density values are used to delineate the OMZ, as well as identify regions where denitrification is observed. The suboxic conditions within the northern Arabian Sea are documented, as well as biological and chemical consequences of this phenomenon. Overall, the conditions found in the suboxic portion of the water column in the Arabian Sea were not greatly different from what has been reported in the literature with respect to oxygen, nitrate and nitrite distributions. Within the main thermocline, portions of the OMZ were found that were suboxic (oxygen less than ~4.5 æM) and contained secondary nitrite maxima with concentrations that sometimes exceeded 6.0 æM, suggesting active nitrate reduction and denitrification. Although there may have been a reduction in the degree of suboxia during the Southwest monsoon, a dramatic seasonality was not observed, as has been suggested by some previous work. In particular, there was not much evidence for the occurrence of secondary nitrite maxima in waters with oxygen concentrations greater than 4.5 æM. Waters in the northern Arabian Sea appear to accumulate larger nitrate deficits due to longer residence times even though the denitrification rate might be lower, as evident in the reduced nitrite concentrations in the northern part of the basin. Organism distributions showed string relationships to the oxygen profiles, especially in locations where the OMZ was pronounced, but the biological responses to the OMZ varied with type of organism. The regional extent of intermediate nepheloid layers in our data corresponds well with the region of the secondary nitrite maximum. This is a region of denitrification, and the presence and activities of bacteria are assumed to cause the increase in particles. ADCP acoustic backscatter measurements show diel vertical migration of plankton or nekton and movement into the OMZ. Daytime acoustic returns from depth were strong, and the dawn sinking and dusk rise of the fauna were obvious. However, at night the biomass remaining in the suboxic zone was so low that no ADCP signal was detectable at these depths. There are at least two groups of organisms, one that stays in the upper mixed layer and another that makes daily excursions. A subsurface zooplankton peak in the lower OMZ (near the lower 4.5 æM oxycline) was also typically present; these animals occurred day and night and did not vertically migrate.},
keywords = {acoustic, Arabian Sea, density, depth, diel, Distribution, location, migrate, migration, occurrence, oxygen minimum, plankton, thermocline, zooplankton},
pubstate = {published},
tppubtype = {article}
}