Ashjian,C.J.,Smtih,S.L.,Flagg,C.N.,Idrisi,N.
Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994-1995 Journal Article
In: Deep-Sea Research Part II, vol. 49, no. 299, pp. 2377-2402, 2002.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, diel, Distribution, history, life history, migration, myctophids, Oceanic, Oman, predation, seasonal change, stocks, Upwelling, zooplankton
@article{,
title = {Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994-1995},
author = {Ashjian,C.J.,Smtih,S.L.,Flagg,C.N.,Idrisi,N.},
year = {2002},
date = {2002-01-01},
journal = {Deep-Sea Research Part II},
volume = {49},
number = {299},
pages = {2377-2402},
abstract = {The distinguishing characteristic that sets the Arabian Sea apart from other oceanic regions is the regular oscillation of monsoonal atmospheric conditions that produces predictable periods of upwelling or convective mixing, with associated biological response, during the Southwest and Northeast monsoons, respectively. This oscillation is also evident in cycles of standing stocks of zooplankton and micronekton. The vertical distribution and spatial pattern of zooplankton and micronekton biomass were estimated using an acoustic Doppler current profiler along a 1000-km transect extending from the continental shelf of Oman to the central Arabian Sea during ten cruises on the R/V Thomas G. Thompson (November 1994-December 1995). The influence of the Southwest Monsoon, and accompanying upwelling and enhanced acoustically derived biomass, was the dominant feature in the spatial-temporal distributions of both zooplankton and micronekton near the Omani coast. The diel vertical migration of predators (myctophids, pelagic crabs), and the seasonal changes in the strength of this signal, was the most significant pattern observed in the vertical distribution of biomass and imparted a strong day-night signal to the integrated upper water-column biomass. Significant differences in the magnitude of integrated upper water-column biomass, both zooplankton (day) and migrator-zooplankton (night), were seen between inshore and offshore of the atmospheric Findlater Jet. A station located in the central Arabian Sea demonstrated seasonal changes in biomass over the year, despite being quite far from the influence of the monsoonal oscillations. Predation pressure was greater offshore of the Findlater Jet than in the region inshore of the Jet or in the central Arabian Sea. The pelagic community of the Arabian Sea may have evolved life history strategies to coincide with the predictable monsoonal cycle},
keywords = {acoustic, Arabian Sea, diel, Distribution, history, life history, migration, myctophids, Oceanic, Oman, predation, seasonal change, stocks, Upwelling, zooplankton},
pubstate = {published},
tppubtype = {article}
}
Butler,M.,Bollens,S.M.,Burghalter,B.,Madin,L.P.,Horgan,E.
Mesopelagic fishes of the Arabian Sea: distribution, abundance and diet of Journal Article
In: Deep-Sea Research Part II, vol. 48, no. 61, pp. 1369-1383, 2001.
Abstract | BibTeX | Tags: abundance, Arabian Sea, diel, diet, diets, Distribution, ecology, feeding, migration, oxygen minimum, population, populations, predation, south
@article{,
title = {Mesopelagic fishes of the Arabian Sea: distribution, abundance and diet of },
author = {Butler,M.,Bollens,S.M.,Burghalter,B.,Madin,L.P.,Horgan,E.},
year = {2001},
date = {2001-01-01},
journal = {Deep-Sea Research Part II},
volume = {48},
number = {61},
pages = {1369-1383},
abstract = {Four species of predatory fishes - Chauliodus pammelas, Chauliodus sloani, Stomias afffnis and Stomias nebulosus - were collected on two cruises to the Arabian Sea during 1995. We present data on the abundances, horizontal and vertical distributions, and diet of these fishes. We also discuss briefly the importance of the oxygen minimum zone and predation on myctophid fishes to the ecology of these mesopelagic predators. Chauliodus pammelas and C. sloani appear to have only partially overlapping horizontal distributions in the Arabian Sea, with C. pammelas more common to the north and C. sloani more common to the south. Our data support previous results suggesting that diel vertical migration is the norm for these species, with smaller individuals usually nearer to the surface and larger individuals tending to stay deeper. In contrast to Chauliodus, Stomias affinis and S. nebulosus appear to have largely overlapping horizontal distributions in the Arabian Sea. However, they may have slightly di!erent vertical distributions, with S. affinis living slightly shallower (especially at night) than S. nebulosus. All four species spend most of their time in the oxygen minimum zone, entering the surface oxygenated waters (100-150 m) only at night (if at all). The diets of C. pammelas, C. sloani, and S. affinis consisted mainly of lantern fishes, Myctophidae, and other fishes. In contrast, S. nebulosus, the smaller of the two Stomias species, ate mostly copepods and other crustaceans. This differential feeding may allow the two Stomias species to co-occur. Three of these four stomiids appear to play an important role in predation on myctophid fish populations in the Arabian Sea.},
keywords = {abundance, Arabian Sea, diel, diet, diets, Distribution, ecology, feeding, migration, oxygen minimum, population, populations, predation, south},
pubstate = {published},
tppubtype = {article}
}
Madhupratap,M.,Gopalakrishnan,T.C.,Haridas,P.,Nair,K.K.C.
Mesozooplankton biomass, composition and distribution in the Arabian Sea during the Fall Intermonsoon: implications of oxygen gradients Journal Article
In: Deep-Sea Research Part II, vol. 48, no. 146, pp. 1345-1368, 2001.
Abstract | BibTeX | Tags: Arabian Sea, depth, diel, Distribution, migration, oxygen minimum, seasonal variation, south, thermocline
@article{,
title = {Mesozooplankton biomass, composition and distribution in the Arabian Sea during the Fall Intermonsoon: implications of oxygen gradients},
author = {Madhupratap,M.,Gopalakrishnan,T.C.,Haridas,P.,Nair,K.K.C.},
year = {2001},
date = {2001-01-01},
journal = {Deep-Sea Research Part II},
volume = {48},
number = {146},
pages = {1345-1368},
abstract = {Mesozooplankton biomass and distribution of calanoid copepods were studied for the upper 500m between 3 and 21§N along an open-ocean transect in the Arabian Sea during the Fall Intermonsoon (September-October 1992, 1993). The region studied has strong gradients in the oxygen minimum zone (OMZ), being acutely deficient in oxygen in the north and with increasing concentrations towards the south. In the upper layers, mesozooplankton biomass was higher in the northern latitudes, above the thermocline, apparently avoiding the OMZ. In the deeper strata, relatively higher biomass was observed in the more oxygenated southern latitudes. Highest mesozooplankton biomass in open waters of the Arabian Sea was observed during the intermonsoon seasons. Calanoid copepods occurred at all depths, and surface-living species did not undertake conspicuous diel migrations, even when they occurred in the deeper waters of the more southern latitudes. A few species belonging to the families Metridinidae and Augaptilidae appeared to be characteristic of the poorly oxygenated mid-depths of the more northern latitudes. Seasonal variations in the composition of the copepod community were negligible. The evolution of the OMZ in the Arabian Sea and its implications are discussed.},
keywords = {Arabian Sea, depth, diel, Distribution, migration, oxygen minimum, seasonal variation, south, thermocline},
pubstate = {published},
tppubtype = {article}
}
Shalapyonok,A.,Olson,R.J.,Shalapyonok,L.S.
Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry Journal Article
In: Deep-Sea Research Part II, vol. 48 , no. 221, pp. 1231-1261, 2001.
Abstract | BibTeX | Tags: abundance, Arabian Sea, diel, Distribution, location, surface temperature, temperature, Upwelling
@article{,
title = {Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry},
author = {Shalapyonok,A.,Olson,R.J.,Shalapyonok,L.S.},
year = {2001},
date = {2001-01-01},
journal = {Deep-Sea Research Part II},
volume = {48 },
number = {221},
pages = {1231-1261},
abstract = {As part of the US JGOFS Arabian Sea Process Study, we determined the abundance, size distributions and carbon biomass of autotrophic phytoplankton in the Arabian Sea during summer Southwest and fall Northeast Monsoon seasons of 1995 (R/V Thomas G. Thompson cruises TN 049 and TN 053). Flowcytometry of 60-ml samples was used to enumerate and determine scattering and fluorescence properties of Prochlorococcus sp., Synechococcus sp., and eukaryotic phytoplankton with cell equivalent spherical diameter up to 40 æm. Cellular forward light scattering was calibrated against Coulter size using 22 phytoplankton cultures spanning the size range 0.8-40 æm, grown exponentially in natural sunlight. The phytoplankton community structure was strongly linked to water-mass characteristics, and was affected by both intense monsoon-related environmental forcing and widespread and dynamic mesoscale structures; the magnitude of spatial variability was similar to that between seasons for all three phytoplankton groups. Prochlorococcus was numerically dominant in the more oligotrophic, stratified areas with surface nitrate concentrations below 0.1 æM and surface temperatures above 27§C. Its abundance was significantly greater during the NE Monsoon and was inversely correlated with the abundance of the two other groups. Synechococcus and eukaryotic phytoplankton cell concentrations covaried at most locations, were highest in areas of intense, monsoon-related mixing, and changed less between seasons than Prochlorococcus. The bulk of biomass of all three groups was located within the mixed layer. Only eukaryotes formed notable subsurface maxima at several offshore locations where Prochlorococcus dominated the mixed layer. Dramatically elevated eukaryotic phytoplankton concentrations in the nutrient-rich upwelling areas were due to the blooming of smaller (<3 æm) cells. Surprisingly, stratified, offshore, nutrient-depleted areas had concentrations of 10-40 æm phytoplankton cells similar to or even higher than upwelling areas. Thus, the mean eukaryotic cell size and the relative contribution of large nanoeukaryotes to the phytoplankton biomass were highest in offshore waters. Eukaryotes accounted for most of the phytoplankton carbon biomass - from about 50 to 80% on average during both seasons. Both Prochlorococcus and large (10 æm) nanoeukaryotes reached their greatest biomass contributions - up to 40% each - in the offshore oligotrophic locations. For the SW and NE Monsoon cruises, flow cytometrically-measured phytoplankton was estimated at 1.1 and 2.2 gCm-2 on average and comprised 33 and 38% of POC, respectively. Diel variability in cellular carbon content accounted for 52% of the observed variability in cellular carbon content for Prochlorococcus, 26% for Synechococcus, and 14% for eukaryotic phytoplankton cells at the surface.},
keywords = {abundance, Arabian Sea, diel, Distribution, location, surface temperature, temperature, Upwelling},
pubstate = {published},
tppubtype = {article}
}
Sherry,N.D.,Wood,A.M.
Phycoerythrin-containing picocyanobacteria in the Arabian Sea in February 1995: diel patterns, spatial variability, and growth rates Journal Article
In: Deep-Sea Research Part II, vol. 48 , no. 225, pp. 1263-1283, 2001.
Abstract | BibTeX | Tags: abundance, Arabian Sea, depth, diel, growth, length, population, survey
@article{,
title = {Phycoerythrin-containing picocyanobacteria in the Arabian Sea in February 1995: diel patterns, spatial variability, and growth rates},
author = {Sherry,N.D.,Wood,A.M.},
year = {2001},
date = {2001-01-01},
journal = {Deep-Sea Research Part II},
volume = {48 },
number = {225},
pages = {1263-1283},
abstract = {The abundance of phycoerythrin-containing picocyanobacteria in the surface mixed layer was measured both along-shore and offshore between 8 and 23 February 1995 in the Northwestern Arabian Sea. Water samples from 3m depth were taken at 2-h intervals and picocyanobacterial abundance and frequency of dividing cells were determined by epifluorescence microscopy. Cell counts showed an average diel change from a mid-day minimum of ~50'103 cells ml-1 to an evening maximum of ~180'103 cells ml-1. The diel change was greater than the differences observed between physically and spatially discrete water masses. By counting the frequency of dividing cells (FDC) and using a novel approach to estimating the length of time required to complete cell division, growth and loss rates were both estimated to be ~2.9 d-1 with daily turnover being 140% of the mean standing stock. If differences in the intrinsic population growth rate (æ) and the net rate of change in cell number (r) are assumed to be due to grazing, then grazing occurred throughout the day at a relatively constant rate (reflecting phytoplankton loss rates of ~0.12 h-1). Cell division rates peaked in the late afternoon and early evening. FDC decreased throughout the night, suggesting that dark-inhibition of cell division is weak or nonexistent in the picocyanobacteria we studied. While all cell types included in this study would be identified as Synechococcus by flow cytometry because they were small unicells with bright phycoerythrin fluorescence, morphological variability suggests that the community was actually taxonomically diverse and included cells other than Synechococcus, including Synechocystis. Despite this diversity, the strong diel patterns we observed persisted throughout the study region, suggesting that great care should be taken when interpreting picocyanobacterial survey data and experimental results that do not account for the e!ects of time-of-day.},
keywords = {abundance, Arabian Sea, depth, diel, growth, length, population, survey},
pubstate = {published},
tppubtype = {article}
}
Luo,J.,Ortner,P.B.,Forcucci,D.,Cummings,S.R.
Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea Journal Article
In: Deep-Sea Research Part II, vol. 47 , no. 145, pp. 1451-1473, 2000.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, depth, diel, displacement, fish, migration, oxygen minimum, sonar, temperature, zooplankton
@article{,
title = {Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea},
author = {Luo,J.,Ortner,P.B.,Forcucci,D.,Cummings,S.R.},
year = {2000},
date = {2000-01-01},
journal = {Deep-Sea Research Part II},
volume = {47 },
number = {145},
pages = {1451-1473},
abstract = {Acoustic (153 kHz ADCP and 12 kHz hull-mounted transducers) data and MOCNESS (MOC01 and MOC10) net tow samples collected in the Arabian Sea during the Spring Intermonsoon (April/May) and Southwest Monsoon (August) in 1995 documented substantial diel migrations of fish and zooplankton despite the year-round presence of an oxygen minimum ((0.2 ml l-1 at 125-150 m). Fish and zooplankton layers were distinguished by comparing 12 kHz sonar and 153 kHz ADCP backscatter data, which indicated that the strongly migrating layers were predominantly composed of fishes. Fish vertical migration speeds were independently estimated from the slopes of the volume scattering layers and from the vertical velocity components of the ADCP, yielding average speeds of 4 and 3 cm s-1 and maximum speeds of 13 and 10 cm s-1, respectively. A few migrating zooplankton layers were identified with an average speed of about 2 cm s-1 and maximum speeds as high as 8 cm s-1. Migration depths for both zooplankton and fish differed somewhat amongst stations and appeared to be related to local hydrographic conditions (principally the vertical gradients in DO and water temperature). Zooplankton displacement volumes at individual sites suggested that zooplankton biomass during the Southwest Monsoon could be as much as fivefold greater than during the Spring Intermonsoon. This observation was confirmed for the region in general by first deriving a relationship between ADCP backscatter intensity and daytime zooplankton biomass and then comparing the latter between cruises using daytime ADCP data taken along a 1500 km transect that extended from the coast of Somalia to the center of the northern basin.},
keywords = {acoustic, Arabian Sea, depth, diel, displacement, fish, migration, oxygen minimum, sonar, temperature, zooplankton},
pubstate = {published},
tppubtype = {article}
}
Gardner,W.D.,Gundersen,J.S.,Richardson,M.J.,Walsh,I.D.
The role of seasonal and diel changes in mixed-layer depth on carbon and chlorophyll distributions in the Arabian Sea Journal Article
In: Deep-Sea Research Part II, vol. 46, no. 97, pp. 1833-1858, 1999.
Abstract | BibTeX | Tags: Arabian Sea, chlorophyll, density, depth, diel, Distribution, nearshore, Oceanic, Upwelling
@article{,
title = {The role of seasonal and diel changes in mixed-layer depth on carbon and chlorophyll distributions in the Arabian Sea},
author = {Gardner,W.D.,Gundersen,J.S.,Richardson,M.J.,Walsh,I.D.},
year = {1999},
date = {1999-01-01},
journal = {Deep-Sea Research Part II},
volume = {46},
number = {97},
pages = {1833-1858},
abstract = {The e!ects of changes in the mixed-layer depth on the distribution of particulate organic carbon (POC) and chlorophyll a were examined in the Arabian Sea during the Northeast Monsoon (January and December), Spring Intermonsoon (February-March), and Southwest Monsoon (July and August) of 1995. POC distributions were derived from profiles of beam attenuation calibrated with POC, and chlorophyll a distributions were derived from calibrated fluorescence profiles. Depth of the seasonal mixed layer (Då of 0.125 kg m-3 from surface density) increased with distance offshore during both monsoons, especially in the southern Arabian Sea where the range was 10-80 m nearshore to 80-120 m offshore. The deepest seasonal mixed layers occurred during the Northeast Monsoon. During the Spring Intermonsoon the seasonal mixed layer was only 10-40 m. Variations in the depth of the diel mixed layer (Då of 0.03 kg m-3 from surface density) were up to 90 m during the Northeast Monsoon, but were seldom over 20 m during the Southwest Monsoon. During the Spring Intermonsoon when mixed layers and diel variations in the mixed layer were small, nutrients became depleted, producing oligotrophic conditions plus a strong deep chlorophyll a maximum (>2 mg chl m-3) below the mixed layer. The chlorophyll a maximum was centered at ~ 50 m, which is significantly beneath the effective depth of satellite color sensing. When mixing is active throughout the diel cycle, particulate organic carbon (POC) and chlorophyll distributions are quite uniform within the mixed layer. Nighttime increases in mixed layer depths can mix POC and chlorophyll a produced during the day downward and can entrain new nutrients to enhance primary production. Although mixing from diel variations may be effective in redistributing components within the mixed layer and may be an important mechanism for removing particles from the mixed layer, regional upwelling of nutrients and diatom blooms appear to dominate over diel mixed layer dynamics in the production and export of carbon in the Arabian Sea.},
keywords = {Arabian Sea, chlorophyll, density, depth, diel, Distribution, nearshore, Oceanic, Upwelling},
pubstate = {published},
tppubtype = {article}
}
Kinkade,C.S.,Marra,J.,Dickey,T.D.,Langdon,C.,Sigurdson,D.E.,Weller,R.
Diel bio-optical variability observed from moored sensors in the Arabian Sea Journal Article
In: Deep-Sea Research Part II, vol. 46, no. 136, pp. 1813-1831, 1999.
Abstract | BibTeX | Tags: Arabian Sea, diel, growth, thermocline
@article{,
title = {Diel bio-optical variability observed from moored sensors in the Arabian Sea},
author = {Kinkade,C.S.,Marra,J.,Dickey,T.D.,Langdon,C.,Sigurdson,D.E.,Weller,R.},
year = {1999},
date = {1999-01-01},
journal = {Deep-Sea Research Part II},
volume = {46},
number = {136},
pages = {1813-1831},
abstract = {As part of the Forced Upper Ocean Dynamics Program, which ran concurrently with the US JGOFS Arabian Sea Expedition, five moorings were deployed in the historical axis of the Findlater Jet. In addition to other variables, moored sensors collected photosynthetically active radiation (PAR), particulate beam attenuation (Cp), stimulated fluorescence (FLU), and dissolved oxygen (O2) data from October 1994 to October 1995. Diel bio-optical signals were recorded during two periods between the Northeast and Southwest Monsoons at 10, 35, and 65 m. Spectral analysis shows significant diel cycles of Cp, FLU, and O2, but the strength of these cycles was not constant over time. Daily periodicity was lowest for all bio-optical signals just after a strong storm during the 1994 Fall Intermonsoon period. During a phytoplankton bloom associated with a cool advective feature, the FLU and O2 diel signals were most pronounced. Although these signals are biological responses to the daily cycle of irradiance, they are mediated by hydrographic conditions; strongest when phytoplankton are confined within the mixed layer or thermocline, and thus exposed to light intensities long enough to display these responses to PAR. Fluorescence quenching at 10 m due to high irradiance (~1000 æEinstein m-2 s-1) forced the ratio of fluorescence to particulate attenuation into a diel periodicity at 10 m, but not at 35 m (noontime irradiance ~200 æEinstein m-2 s-1), where the FLU and Cp increases were almost in phase. Diel changes in Cp, when scaled to particulate organic carbon, suggest a net production of ~20 mg C m-3 d-1 at 10 and 35 m. We estimate a specific growth rate from a calculated particle production rate balanced by a constant grazing over 24 h to be 0.77 d-1, and using a C*c of 424 mg C m-2, estimate a carbon : chl a ratio between 85 and 115 for a 10-d window during the 1994 Fall Intermonsoon period },
keywords = {Arabian Sea, diel, growth, thermocline},
pubstate = {published},
tppubtype = {article}
}
McCarthy,J.J.,Garside,C.,Nevins,J.L.
Nitrogen dynamics during the Arabian Sea Northeast Monsoon Journal Article
In: Deep-Sea Research Part II, vol. 46, no. 151, pp. 1623-1664, 1999.
Abstract | BibTeX | Tags: Arabian Sea, depth, development, diel, growth, productivity
@article{,
title = {Nitrogen dynamics during the Arabian Sea Northeast Monsoon},
author = {McCarthy,J.J.,Garside,C.,Nevins,J.L.},
year = {1999},
date = {1999-01-01},
journal = {Deep-Sea Research Part II},
volume = {46},
number = {151},
pages = {1623-1664},
abstract = {This investigation focused on the weaker and less well understood of the two Arabian Sea monsoonal wind phases, the NE Monsoon, which persists for 3-4 months in the October to February period. Historically, this period has been characterized as a time of very low nutrient availability and low biological production. As part of the US JGOFS Arabian Sea Process Study, 17 stations were sampled on a cruise in January 1995 (late NE Monsoon) and, 15 stations were sampled on a cruise in November 1995 (early NE Monsoon). Only the southern most stations (10§ and 12§N) and one shallow coastal station were as nutrient-depleted as had been expected from the few relevant prior studies in this region. Experiments were conducted to ascertain the relative importance of different nitrogenous nutrients and the sufficiency of local regeneration processes in supplying nitrogenous nutrients utilized in primary production. Except for the southern oligotrophic stations, the euphotic zone concentrations of NO3- were typically 5-10-fold greater than those of NO2- and NH4+. There was considerable variation (20-40-fold) in nutrient concentration both within and between the two sections on each cruise. All nitrogenous nutrients were more abundant (2-4-fold) later in the NE Monsoon. Strong vertical gradients in euphotic zone NH4- concentration, with higher concentrations at depth, were common. This was in contrast to the nearly uniform euphotic zone concentrations for both NO3- and NO2-. Half-saturation constants for uptake were higher for NO3- (1.7 æmol kg-1 (s.d.=0.88, n=8)) than for NH4+ (0.47 æmol kg-1 (s.d.=0.33, n=5)). Evidence for the suppressing effect of NH4+ on NO3- uptake was widespread, although not as severe as has been noted for some other regions. Both the degree of sensitivity of NO3- uptake to NH4+ concentration and the half-saturation constant for NO3+ uptake were correlated with ambient NO3- concentration. The combined e!ect of high affnity for low concentrations of NH4+ and the effect of NH4+ concentration on NO3- uptake resulted in similarly low f-ratios, 0.15 (s.d.=0.07, n=15) and 0.13 (s.d.=0.08, n=17), for early and late observations in the NE Monsoon, respectively. Stations with high f-ratios had the lowest euphotic zone NH4+ concentrations, and these stations were either very near shore or far from shore in the most oligotrophic waters. At several stations, particularly early in the NE Monsoon, the utilization rates for NO2- were equal to or greater than 50% the utilization rates for NO3- . When converted with a Redfield C : N value of 6.7, the total N uptake rates measured in this study were commensurate with measurements of C productivity. While nutrient concentrations at some stations approached levels low enough to limit phytoplankton growth, light was shown to be very important in regulating N uptake at all stations in this study. Diel periodicity was observed for uptake of all nitrogenous nutrients at all stations. The amplitude of this periodicity was positively correlated with nutrient concentration. The strongest of these relationships occurred with NO3- . Ammonium concentration strongly influenced the vertical profiles for NO3- uptake as well as for NH4+ uptake. Both NO2- and NH4+ were regenerated within the euphotic zone at rates comparable to rates of uptake of these nutrients, and thus maintenance of mixed layer concentrations did not require diffusive or advective fluxes from other sources. Observed turnover times for NH4+ were typically less than one day. Rapid turnover and the strong light regulation of NH4+ uptake allowed the development and maintenance of vertical structure in NH4+ concentration within the euphotic zone. In spite of the strong positive effect of light on NO2- uptake and its strong negative effect on NO2- production, the combined effects of much longer turnover times for this nutrient and mixed layer dynamics resulted in nearly uniform NO2- concentrations within the euphotic zone. Responses of the NE Monsoon planktonic community to light and nutrients, in conjunction with mixed layer dynamics, allowed for effcient recycling of N within the mixed layer. As the NE Monsoon evolved and the mixed layer deepened convectively, NO2- and NO3- concentrations increased correspondingly with the entrainment of deeper water. Planktonic N productivity increased 2-fold, but without a significant change the new vs. recycled N proportionality. Consequently, NO3- turnover time increased from about 1 month to greater than 3 months. This reflected the overriding importance of recycling processes in supplying nitrogenous nutrients for primary production throughout the duration of the NE Monsoon. As a result, NO3- supplied to the euphotic zone during the NE Monsoon is, for the most part, conserved for utilization during the subsequent intermonsoon period. },
keywords = {Arabian Sea, depth, development, diel, growth, productivity},
pubstate = {published},
tppubtype = {article}
}
Morrison,J.M.,Codispoti,L.A.,Smith,S.L.,Wishner,K.,Flagg,C.,Gardner,W.D.,Gaurin,S.,Naqvi,S.W.A.,Manghnani,V.,Prosperie,L.,Gundersen,J.S.
The oxygen minimum zone in the Arabian Sea during 1995 Journal Article
In: Deep-Sea Research Part II, vol. 46, no. 174, pp. 1903-1931, 1999.
Abstract | BibTeX | Tags: acoustic, Arabian Sea, density, depth, diel, Distribution, location, migrate, migration, occurrence, oxygen minimum, plankton, thermocline, zooplankton
@article{,
title = {The oxygen minimum zone in the Arabian Sea during 1995},
author = {Morrison,J.M.,Codispoti,L.A.,Smith,S.L.,Wishner,K.,Flagg,C.,Gardner,W.D.,Gaurin,S.,Naqvi,S.W.A.,Manghnani,V.,Prosperie,L.,Gundersen,J.S.},
year = {1999},
date = {1999-01-01},
journal = {Deep-Sea Research Part II},
volume = {46},
number = {174},
pages = {1903-1931},
abstract = {This paper focuses on the characteristics of the oxygen minimum zone (OMZ) as observed in the Arabian Sea over the complete monsoon cycle of 1995. Dissolved oxygen, nitrite, nitrate and density values are used to delineate the OMZ, as well as identify regions where denitrification is observed. The suboxic conditions within the northern Arabian Sea are documented, as well as biological and chemical consequences of this phenomenon. Overall, the conditions found in the suboxic portion of the water column in the Arabian Sea were not greatly different from what has been reported in the literature with respect to oxygen, nitrate and nitrite distributions. Within the main thermocline, portions of the OMZ were found that were suboxic (oxygen less than ~4.5 æM) and contained secondary nitrite maxima with concentrations that sometimes exceeded 6.0 æM, suggesting active nitrate reduction and denitrification. Although there may have been a reduction in the degree of suboxia during the Southwest monsoon, a dramatic seasonality was not observed, as has been suggested by some previous work. In particular, there was not much evidence for the occurrence of secondary nitrite maxima in waters with oxygen concentrations greater than 4.5 æM. Waters in the northern Arabian Sea appear to accumulate larger nitrate deficits due to longer residence times even though the denitrification rate might be lower, as evident in the reduced nitrite concentrations in the northern part of the basin. Organism distributions showed string relationships to the oxygen profiles, especially in locations where the OMZ was pronounced, but the biological responses to the OMZ varied with type of organism. The regional extent of intermediate nepheloid layers in our data corresponds well with the region of the secondary nitrite maximum. This is a region of denitrification, and the presence and activities of bacteria are assumed to cause the increase in particles. ADCP acoustic backscatter measurements show diel vertical migration of plankton or nekton and movement into the OMZ. Daytime acoustic returns from depth were strong, and the dawn sinking and dusk rise of the fauna were obvious. However, at night the biomass remaining in the suboxic zone was so low that no ADCP signal was detectable at these depths. There are at least two groups of organisms, one that stays in the upper mixed layer and another that makes daily excursions. A subsurface zooplankton peak in the lower OMZ (near the lower 4.5 æM oxycline) was also typically present; these animals occurred day and night and did not vertically migrate.},
keywords = {acoustic, Arabian Sea, density, depth, diel, Distribution, location, migrate, migration, occurrence, oxygen minimum, plankton, thermocline, zooplankton},
pubstate = {published},
tppubtype = {article}
}