Willson, A.,Baldwin, R.,Collins, T.,Godley, B.J.,Minton, G.,Al Harthi, S.,Pikesley, Stephen K,Witt, Matthew J
Preliminary ensemble ecological niche modelling of Arabian Sea humpback whale vessel sightings and satellite telemetry data Technical Report
no. 502, 2017, ISBN: SC/67A/CMP/15.
Abstract | BibTeX | Tags: Arabian Gulf, Arabian Sea, ensemble niche modeling, habitat modelling, habitat preference, Humpback Whale, megaptera novaeangliae, Persian Gulf, Satellite telemetry
@techreport{,
title = {Preliminary ensemble ecological niche modelling of Arabian Sea humpback whale vessel sightings and satellite telemetry data},
author = {Willson, A.,Baldwin, R.,Collins, T.,Godley, B.J.,Minton, G.,Al Harthi, S.,Pikesley, Stephen K,Witt, Matthew J},
issn = { SC/67A/CMP/15},
year = {2017},
date = {2017-01-01},
journal = {Document presented to the meeting of the Scientific Committee of the International Whaling Commission},
number = {502},
pages = {17},
abstract = {Ensemble ecological niche modelling (EENM) can provide insight into the relationship between marine mammals and
their environment and can predict distribution beyond the range of observed locations. The technique can be used to
identify sites for future field research and guide conservation and management activities. The spatial ecology of Arabian
Sea humpback whales (ASHWs) has been described off the coast of Oman, although a paucity of information exists
from which to describe their distribution across the rest of their potential range. Here we present an ensemble ecological
niche modelling framework to predict habitat suitability of ASHWs across the north Indian Ocean. Sightings data from
Oman-based small vessel surveys (2003-2014) and satellite telemetry records (2014-2016) were used along with
environmental co-variate data from a season between December and May. Net primary productivity featured as the only
co-variate with a strong influence on models for both datasets. Model test evaluation metrics scored >0.9, and mapped
outputs of likely distribution highlighted spatial similarity across multiple models. Telemetry data predicted suitable
habitat to be further offshore than the models derived from sightings data. All resulting distribution maps described
areas of high suitability (index value <0.75) along the southern and central coast of Oman and of the northern Arabian
Sea between the Gulf of Kutch and sub-marine canyon features off the Indus delta. There was good spatial concordance
between ensemble model predictions with actual locations of Soviet catches of humpback whales in the northern Indian
Ocean between 1964 and 1966. Both the telemetry and the sightings data were temporally sporadic in their coverage
(across months) and biologically biased (towards males) and as such results from our preliminary efforts should be
considered in light of these caveats. However, these preliminary results are valuable and indicate likely co-occurrence
with high density shipping traffic routes in the region and target additional areas for focussed field surveys. Results
from this study should be considered together with results of recent north Indian Ocean blue whale ENM studies to help
guide future research and conservation management objectives in the region.},
keywords = {Arabian Gulf, Arabian Sea, ensemble niche modeling, habitat modelling, habitat preference, Humpback Whale, megaptera novaeangliae, Persian Gulf, Satellite telemetry},
pubstate = {published},
tppubtype = {techreport}
}
Ensemble ecological niche modelling (EENM) can provide insight into the relationship between marine mammals and
their environment and can predict distribution beyond the range of observed locations. The technique can be used to
identify sites for future field research and guide conservation and management activities. The spatial ecology of Arabian
Sea humpback whales (ASHWs) has been described off the coast of Oman, although a paucity of information exists
from which to describe their distribution across the rest of their potential range. Here we present an ensemble ecological
niche modelling framework to predict habitat suitability of ASHWs across the north Indian Ocean. Sightings data from
Oman-based small vessel surveys (2003-2014) and satellite telemetry records (2014-2016) were used along with
environmental co-variate data from a season between December and May. Net primary productivity featured as the only
co-variate with a strong influence on models for both datasets. Model test evaluation metrics scored >0.9, and mapped
outputs of likely distribution highlighted spatial similarity across multiple models. Telemetry data predicted suitable
habitat to be further offshore than the models derived from sightings data. All resulting distribution maps described
areas of high suitability (index value <0.75) along the southern and central coast of Oman and of the northern Arabian
Sea between the Gulf of Kutch and sub-marine canyon features off the Indus delta. There was good spatial concordance
between ensemble model predictions with actual locations of Soviet catches of humpback whales in the northern Indian
Ocean between 1964 and 1966. Both the telemetry and the sightings data were temporally sporadic in their coverage
(across months) and biologically biased (towards males) and as such results from our preliminary efforts should be
considered in light of these caveats. However, these preliminary results are valuable and indicate likely co-occurrence
with high density shipping traffic routes in the region and target additional areas for focussed field surveys. Results
from this study should be considered together with results of recent north Indian Ocean blue whale ENM studies to help
guide future research and conservation management objectives in the region.
their environment and can predict distribution beyond the range of observed locations. The technique can be used to
identify sites for future field research and guide conservation and management activities. The spatial ecology of Arabian
Sea humpback whales (ASHWs) has been described off the coast of Oman, although a paucity of information exists
from which to describe their distribution across the rest of their potential range. Here we present an ensemble ecological
niche modelling framework to predict habitat suitability of ASHWs across the north Indian Ocean. Sightings data from
Oman-based small vessel surveys (2003-2014) and satellite telemetry records (2014-2016) were used along with
environmental co-variate data from a season between December and May. Net primary productivity featured as the only
co-variate with a strong influence on models for both datasets. Model test evaluation metrics scored >0.9, and mapped
outputs of likely distribution highlighted spatial similarity across multiple models. Telemetry data predicted suitable
habitat to be further offshore than the models derived from sightings data. All resulting distribution maps described
areas of high suitability (index value <0.75) along the southern and central coast of Oman and of the northern Arabian
Sea between the Gulf of Kutch and sub-marine canyon features off the Indus delta. There was good spatial concordance
between ensemble model predictions with actual locations of Soviet catches of humpback whales in the northern Indian
Ocean between 1964 and 1966. Both the telemetry and the sightings data were temporally sporadic in their coverage
(across months) and biologically biased (towards males) and as such results from our preliminary efforts should be
considered in light of these caveats. However, these preliminary results are valuable and indicate likely co-occurrence
with high density shipping traffic routes in the region and target additional areas for focussed field surveys. Results
from this study should be considered together with results of recent north Indian Ocean blue whale ENM studies to help
guide future research and conservation management objectives in the region.